Home
Class 12
MATHS
Let y = sin^(-1) ((2x)/(1 + x^2)) where ...

Let `y = sin^(-1) ((2x)/(1 + x^2))` where `0 lt x lt 1` and `0 lt y lt pi//2` then `(dy)/(dx)` is equal to

A

`(2)/(1 + x^2)`

B

`(2x)/(1 + x^2)`

C

`1/(1 + x^2)`

D

`(-x)/(1 + x^2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

Differentiate cos^(-1) ((1 - x^2)/(1 + x^2)) , 0 lt x lt 1 . w.r.t.x

If 0 lt x lt 2 pi and |cos x| le sin x , then

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

Show that : x- x^3/6 lt sinx for 0 lt x lt pi/2

Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3) . Then a value of y is