Home
Class 12
CHEMISTRY
A solution of urea in water has boiling ...

A solution of urea in water has boiling point of `100.15^(@)C`. Calculate the freezing point of the same solution if `K_(f)` and `K_(b)` for water are `1.87 K kg mol^(-1)` and `0.52 K kg mol^(-1)`, respectively.

Text Solution

Verified by Experts

`DeltaT_(b) =(100.15 - 100) = 0.15^(@)C`
We know that `DeltaT_(b) = "Molality" xx K_(B)`
Molality `= (DeltaT_(b))/(K_(B)) = (0.15)/(0.50) = 0.2884`
`DeltaT_(b) = "Molality" xx K_(f)`
`= 0.2884 xx 1.87`
`= 0.54^(@)C`
Thus, the freezing point of the solution `= -0.54^(@)C`
Promotional Banner

Similar Questions

Explore conceptually related problems

The freezing point of a 0.05 molal solution of a non-eletrolyte in water is ( K_(f)=1.86Km^(-1) )

A solution containing 12.5 g of non-electrolyte solution in 175g of water gave a boiling point elevation of 0.7 k. calculate the molar mass of the solute if K_(b) for water is 0.52 K kg mol^(-1) .

A solution containg 12 g of a non-electrolyte substance in 52 g of water gave boiling point elevation of 0.40 K . Calculate the molar mass of the substance. (K_(b) for water = 0.52 K kg mol^(-1))

What do you understand by the term that K_(f) for water is 1.86 K kg mol^(-1) ?

After adding non-volatile solute freezing point of water decreases to - 0.186^@C . Calculate DeltaT_b if K_f = 1.86 K kg mol^(-1) and K_b = 0.521 K kg mol^(-1)

What should be the freezing point of aqueous solution containing 17g of C_(2)H_(5)OH in 1000g of water ( K_(f) for water = 1.86 deg kg mol^(-1)) ?

What is the boiling point of an aqueous solution containing 0.6g of urea in 100g of water? Kb for water is 0.52 K kg mol^(-1) .