Home
Class 9
MATHS
a^(2) + (b^(2))/(4) + 1 - ab - b + 2a is...

`a^(2) + (b^(2))/(4) + 1 - ab - b + 2a` is equal to :

A

`(a-(b)/(2)+a)^(2)`

B

`(a-(b)/(2)-a)^(2)`

C

`(a+(b)/(2)-a)^(2)`

D

`(a+(b)/(2)+a)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are non zero rational unequal numbers, then ((a+b)^(2)-(a-b)^(2))/(a^(2)b-ab^(2)) is equal to :

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

If a+b=1 , then a^(4)+b^(4)-a^(3)-b^(3)-2a^(2)b^(2)+ab is equal to :

If 5a-b, 2a+b, a+2b are in A.P. and (a-1)^(2), (ab+1),(b+1)^(2) are in G.P., a ne 0 , then a is equal to

If a^(2) + b^(2) = 7 ab , then log (( a + b)/(3 )) equals