Home
Class 9
MATHS
If a + b + c = 0, then find the value of...

If `a + b + c = 0`, then find the value of `(1)/((a + b)(b+c)) + (1)/((a+c)(b+a)) + (1)/((c+a)(c+b))`.

A

1

B

0

C

`-1`

D

-2

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

If a + b + c = 0 , then find the value of ( ( a + b ) / c + ( b + c )/a + ( c + a ) / b ) times ( a /( b + c ) + b /( c + a ) + c /( a + b ) ) is :

Knowledge Check

  • If a + b + c = 0 then the value of (1)/((a + b) ( b + c)) + (1)/(( a + c) ( b + a))+ (1)/( ( c + a) ( c + b)) is

    A
    1
    B
    0
    C
    `-1`
    D
    `-2`
  • If a + b + c =0 then the value of (1)/((a + b ) (b + c)) + (1)/( (b + c ) (c + a)) + (1)/((c+ a) (a+ b))

    A
    0
    B
    1
    C
    3
    D
    2
  • If a + b + c = 0 then the value of (1)/((a + b) ( b + c)) + (1)/( ( b + c) ( c + a)) + (1)/(( c + a) ( a + b)) is

    A
    0
    B
    1
    C
    3
    D
    2
  • Similar Questions

    Explore conceptually related problems

    If ab + bc + ca = 0, then find the value of (b)/((a+b)(b+c))+(c)/((a+c)(c+b))+(a)/((a+b)(c+a))

    If ( a - b) = (1)/(( b - c)) and a ne b ne c then the value of (1)/(( a - b) ( b - c)) - (1)/(( b - c) ( c - a)) - (1)/(( a - b) ( a - b)) is

    If a + b + c =0, find the value of (1)/(a ^(3)) + (1)/(b ^(3)) + (1)/(c ^(3)) + ((1)/(( a + b) ^(3)) + (1)/((b + c ) ^(2)) + (1)/((c + a)^(3))) is :

    If a + b + c = 0 then the value of ((a + b)/( c) + (b + c)/( a) + ( c + a)/(b)) ((a)/( b + c) + (b)/( c +a) + (c)/(a + b)) is

    If a, b, c are in H.P., then the value of ((1)/(b) + (1)/(c) - (1)/(a)) ((1)/(c) + (1)/(a) - (1)/(b)) is