Home
Class 11
MATHS
bar(a) , bar(b), bar (c ), are non-copla...

`bar(a) , bar(b), bar (c )`, are non-coplanar vectors, Prove that the following four points are coplanar.
`6bar(a) + 2bar(b) - bar(c ), 2bar(a) - bar(b) + 3bar(c ), -bar(a) + 2bar(b)-4bar(c ), -12bar(a)-bar(b)-3bar(c )`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C|7 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-A VERY SHORT ANSWER TYPE QUESTIONS|10 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C LONG ANSWER TYPE QUESTION|7 Videos
  • MODEL PAPER - 8

    VGS PUBLICATION-BRILLIANT|Exercise Section - C (Long Answer Type Questions)|8 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long answer type questions)|8 Videos

Similar Questions

Explore conceptually related problems

bar(a), bar(b), bar(c) are non-coplanar vectors. Prove thate the following four points are coplanar - bar(a) + 4 bar(b) - 3 bar(c) , 3 bar(a) + 2 bar(b) - 5 bar(c) - 3 bar(a) + 8 bar(b) - 5 bar(c) , - 3 bar(a) + 2 bar(b) + bar(c)

Show that the following vectors are linearly dependent bar(a)-2bar(b)+3bar(c), -2bar(a)+3bar(b)-4bar(c), -bar(b)+2bar(c)

If bar(a), bar(b), bar(c) are non coplanar vectors, then test for the collinearity of the following points whose position vectors are given. i) bar(a)-2bar(b)+3bar(c), 2bar(a)+3bar(b)-4bar(c), -7bar(b)+10bar(c) ii) 3bar(a)-4bar(b)+3bar(c), -4bar(a)+5bar(b)-6bar(c), 4bar(a)-7bar(b)+6bar(c) iii) 2bar(a)+5bar(b)-4bar(c), bar(a)+4bar(b)-3bar(c), 4bar(a)+7bar(b)-6bar(c)

Show that the following vectors are linearly dependent 3bar(a)-2bar(b)-4bar(c), -bar(a)+2bar(c), -2bar(a)+bar(b)+3bar(c)

Compute bar(a) xx (bar(b) + bar(c )) + bar(b) xx (bar(c ) +bar(a)) + bar(c ) xx (bar(a)+bar(b))