Home
Class 11
MATHS
bar a, bar b, bar c are three vectros, t...

`bar a, bar b, bar c` are three vectros, then prove that:
`(bar a xx bar b) xx bar c = (bar a. bar c) bar b-(bar b. bar c) bar a.`

Text Solution

Verified by Experts

The correct Answer is:
`bar a`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-A VERY SHORT ANSWER TYPE QUESTIONS|10 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B SHORT ANSWER TYPE QUESTION|7 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B|7 Videos
  • MODEL PAPER - 8

    VGS PUBLICATION-BRILLIANT|Exercise Section - C (Long Answer Type Questions)|8 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long answer type questions)|8 Videos

Similar Questions

Explore conceptually related problems

i) If bar(a), bar(b), bar(c) are non coplanar vectors, then prove that the vectors 5bar(a)-6bar(b)+7bar(c), 7bar(a)-8bar(b)+9bar(c) and bar(a)-3bar(b)+5bar(c) are coplanar.

Prove that bar(a)x[bar(a)x(bar(a) x bar(b))] = (bar(a).bar(a))(bar(b)xbar(a)) .

If bar(a)bar(b)bar(c ) and bar(d) are vectors such that bar(a) xx bar(b) = bar(c ) xx bar(d) and bar(a) xx bar(c ) = bar(b)xxbar(d) . Then show that the vectors bar(a) - bar(d) and bar(b) -bar(c ) are parallel.

Let bar(a), bar(b), bar(c ) be unit vectors, suppose that bar(a). bar(b) = bar(a). bar(c )= 0 and the angle between bar(b) and bar(c ) is pi//6 then show that bar(a)= +-2 (bar(b) xx bar( c))

If bar(a), bar(b), bar(c) are linearly independent vectors, then show that bar(a)-3bar(b)+2bar(c), 2bar(a)-4bar(b)-bar(c), 3bar(a)+2bar(b)-bar(c) are linearly independent.

If bar a = 2 bar I + bar j - bar k, bar b = - bari + 2 bar j - 4 bar k and bar c = bar I + bar j + bar k , then find ( bar a xx bar b) cdot (bar b xx bar c) .

If bar(a)+bar(b)+bar(c)=bar(0) then prove that bar(a)xxbar(b)=bar(b)xxbar(c)=bar(c)xxbar(a) .

Compute bar(a) xx (bar(b) + bar(c )) + bar(b) xx (bar(c ) +bar(a)) + bar(c ) xx (bar(a)+bar(b))