Home
Class 11
MATHS
If A,B, C are angles in a triangle, then...

If A,B, C are angles in a triangle, then prove that: `sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C`

Text Solution

Verified by Experts

The correct Answer is:
R.H.S
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-A VERY SHORT ANSWER TYPE QUESTIONS|10 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B SHORT ANSWER TYPE QUESTION|7 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B|7 Videos
  • MODEL PAPER - 8

    VGS PUBLICATION-BRILLIANT|Exercise Section - C (Long Answer Type Questions)|8 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long answer type questions)|8 Videos

Similar Questions

Explore conceptually related problems

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B, C are angles of a triangle, then prove that sin^(2)""A/2+sin^(2)""B/2-sin^(2)""C/2=1-2cos""A/2cos""B/2sin""C/2 .

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A, B, C are the angles in a triangle then prove that sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))

If A+B+C=(pi)/(2) , then prove that sin ^(2) A+ sin ^(2) B + sin ^(2) C=1-2 A sin B sin C .

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC