Home
Class 11
MATHS
If A is not an intergral multiple of pi/...

If A is not an intergral multiple of `pi//2` , prove that `tanA+cotA=2"cosec"2A`

Text Solution

Verified by Experts

The correct Answer is:
`2 cosec 2A`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-B|7 Videos
  • MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C|7 Videos
  • MODEL PAPER 2

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C (LONG ANSWER TYPE QUESTIONS)|7 Videos
  • MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long answer type questions)|6 Videos

Similar Questions

Explore conceptually related problems

If A is not an integral multiple of (pi)/(2) , prove that (i) tan A + cot A= 2 cosec 2 A (ii) cot A - tan A = 2cot 2A

If 2A is not an integral multiple of pi , then show that i) cot A+tan A=2"cosec " 2A ii) cot A-tan A=2 cot2A and deduce the values of tan52 1^(@)/2 and tan37 1^(@)/2

If A is not an integral multiple of (pi) , prove that cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A) Hence deduce that cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)

If theta is not an integral multiple of (pi)/(2) , prove that tan theta + 2 tan 2 theta +4 tan 4 theta +8 cot 8 theta = cot theta

cosec x =-2

Suppose that A+B =135^(@) and neither A nor B is an intergral multiple of 180^(@) . Then prove that (1 + cot A)(1 + cot B) = 2 and hence deduce that cot67(1^(@))/(2) = sqrt(2)- 1 .

If none of 2A, 3A is an odd multiple of pi/2 then prove that tan 3A tan2A tanA = tan 3A-tan2A-tanA

If none of 2A and 3A is an odd multiple of pi/2 , then prove that tan3A.tan2A.tanA=tan3A-tan2A-tanA .

If A+B=pi//4 , then prove that (cotA-1)(cotB-1)=2