Home
Class 11
MATHS
Show that i) baraxx(baraxx(baraxxbarb)...

Show that
i) `baraxx(baraxx(baraxxbarb))=(bara.bara)(barbxxbara)`
ii) `{(baraxxbarb)xx(baraxxbarc)}.bard=(bara.bard)[bara barb barc]`

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -I(A) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-B|7 Videos
  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Properties of Triangles (Long Answer Type Questions)|11 Videos
  • MATHEMATICS -I(A) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

[(baraxxbarb)xx(baraxxbarc)].bard=k[bara barb barc] then k=

Show that (baraxx(barbxxbarc))xxbarc=(bara.barc)(barbxxbarc) and ((baraxxbarb).(baraxxbarc)+bara.barb)(bara.barc)=(bara.bara)(barb.barc)

Show that bara.[(barb+barc)xx(bara+barb+barc)]=0

If [baraxx(barbxxbarc)]xxbarc=(bara·barc)barR then barR=

(bara+2barb-barc).(bara-barb)xx(bara-barb-barc)=

[bara barb barc]+[bara barc barb] =

Show that (bara+barb).(barb+barc)xx(barc+bara)=2[barabarbbarc]

If [bara barb barc ] = 1 then show that (bara.bara)(barbxxbarc)+ (bara.barb)(barcxxbara)+(bara.barc)(baraxxbarb)=bara .

Prove that [barbxxbarc barcxxbara baraxxbarb]=[bara barb barc]^(2)