Home
Class 11
MATHS
If A,B,C are angles in a triangle , then...

If A,B,C are angles in a triangle , then prove that `cosA+cosB+cosC=1+4sin. (A)/(2)sin. (B)/(2) sin. (C)/(2)`

Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -I(A) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-B|7 Videos
  • FINAL TOUCH (A SPECIAL PACKAGE OF THE MOST IMPORTANT QUESTIONS TO SUCCEED IN EXAMINATION EASILY)

    VGS PUBLICATION-BRILLIANT|Exercise Properties of Triangles (Long Answer Type Questions)|11 Videos
  • MATHEMATICS -I(A) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A, B, C are the angles in a triangle then prove that sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

IF A,B,C are angles in the triangle, then prove that cosA+cosB-cosC=-1+4cos""A/2.cos""B/2.sin""C/2

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C