Home
Class 11
MATHS
If vec(a)= 2vec(i) + 5vec(j) + vec(k) an...

If `vec(a)= 2vec(i) + 5vec(j) + vec(k) and vec(b)=4vec(i) + mvec(j) + n vec(k)` are collinear vectors, then find the m and n

Text Solution

Verified by Experts

The correct Answer is:
n=2
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 8

    VGS PUBLICATION-BRILLIANT|Exercise SECTION B (Short answer type questions)|7 Videos
  • MODEL PAPER 8

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C (Long answer type questions)|7 Videos
  • MODEL PAPER 7

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|8 Videos
  • MODEL PAPER 9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C (Long answer type questions)|7 Videos

Similar Questions

Explore conceptually related problems

If vec(a)= 2vec(i) -vec(j) + 3vec(k), vec(b)= p vec(i) + vec(j) + q vec(k) and vec(b) xx vec(a) = vec(0) , then

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

If vec(a)= 2vec(i) + 3vec(j)- 5vec(k), vec(b)= m vec(i) + n vec(j) + 12 vec(k) and vec(a) xx vec(b) = vec(0) then (m, n)=

If vec(c ) is a unit vector perpendicular to both vec(a) = vec(i) + 5vec(j) + vec(k) and vec(b)= 2vec(i) - vec(j) + vec(k) such that vec(a), vec(b), vec(c ) form right handed system then find vec(c ) .

If vec(a)= 4vec(i) + 5vec(j)- vec(k), vec(b)= vec(i)- 4vec(j) + 5vec(k) and vec(c )= 3vec(i) + vec(j)- vec(k) , the find vector vec(alpha) which is perpendicular to both vec(a), vec(b) and vec(alpha).vec(c )= 21

If vec(a) = vec(i) + 2vec(j) - 3vec(k), vec(b)= 2vec(i) + vec(j) - vec(k) and vec(u) is a vector satisfying vec(a) xx vec(u) = vec(a) xx vec(b) and vec(a).vec(u)= 0 , then 2|vec(u)|^(2) =

Let vec(a)= 2vec(i) + vec(k), vec(b) = vec(i) + vec(j) + vec(k) and vec( c)= 4vec(i) -3vec(j) + 7vec(k) . Determine a vector vec(r ) satisfying vec( r) xx vec(b)= vec( c) xx vec(b) and vec(r ).vec(a)= 0 .

If vec(a) = 2vec(i) + 3vec(j) + 4vec(k), vec(b)= vec(i) + vec(j)- vec(k), vec(c )= vec(i) - vec(j) + vec(k) then verify that vec(a) xx (vec(b) xx vec(c )) is perpendicular to vec(a)

vec(a)= 2vec(i) + vec(j) -vec(k), vec(b)= -vec(i) + 2vec(j)- 4vec(k) and vec(c )= vec(i) + vec(j) + vec(k) , then find (vec(a) xx vec(b)).(vec(b) xx vec(c )) .

If vec(a)= 2vec(i) + vec(j)-3vec(k), vec(b)=vec(i) -2vec(j) + vec(k) , then a vector of length and perpendicular to both vec(a) and vec(b) is