Home
Class 11
MATHS
If A, B, C are angles of a triangle, the...

If A, B, C are angles of a triangle, then prove that
`sin^(2)""A/2+sin^(2)""B/2-sin^(2)""C/2=1-2cos""A/2cos""B/2sin""C/2`.

Text Solution

Verified by Experts

The correct Answer is:
`C/2`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 8

    VGS PUBLICATION-BRILLIANT|Exercise SECTION B (Short answer type questions)|7 Videos
  • MODEL PAPER 7

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|8 Videos
  • MODEL PAPER 9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C (Long answer type questions)|7 Videos

Similar Questions

Explore conceptually related problems

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A, B, C are angles in a triangle , then prove that cos^(2)A+cos^(2)B-cos^(2)C=1-2sin Asin Bcos C.

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

If A, B, C are angles of a triangle , prove that sin 2A+sin 2B-sin 2C=4cos Acos B sin C

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

IF A,B,C are angles in the triangle, then prove that cosA+cosB-cosC=-1+4cos""A/2.cos""B/2.sin""C/2

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)