Home
Class 11
MATHS
If f:Rrarr(0,oo) defined by f(x)=5^(x), ...

If `f:Rrarr(0,oo)` defined by `f(x)=5^(x), "then find "f^(-1)(x)`

Text Solution

Verified by Experts

The correct Answer is:
`log_(5)x`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (II. Short answer type questions)|7 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long answer type questions)|8 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C LONG ANSWER TYPE QUESTION|7 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer type questions)|7 Videos

Similar Questions

Explore conceptually related problems

f : R to (0, oo) defined by f (x) = 5 ^(x). then f ^-1(x)

If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=

f : R to (0, oo) defined by f (x) = 2 ^(x) . then f ^-1(x)

If f:[1,oo) to [1,oo) is defined by f(x) = 2^(x(x-1)) then find f^(-1)(x) .

f : R to (0, oo) defined by f (x) = log _(2) (x). then f ^-1(x)

If the function f: [2, oo) rarr [-1, oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If f: R to [0, infty) defined by f(x) = 10^(x) then f^(-1)(x) =

f: [0, oo) rarr [4, oo) is defined by f(x)=I^(2)+4 then f^(-1)(13)=

If f:R rarr(0, 1] is defined by f(x)=(1)/(x^(2)+1) , then f is