Home
Class 11
MATHS
If veca=veci-2vecj-3veck,vecb=2veci+vecj...

If `veca=veci-2vecj-3veck,vecb=2veci+vecj-veck and vec(c)=veci+3vecj-2veck`, verify that `vecaxx(vecbxxvec(c))ne(vecaxxvecb)xxvec(c)`.

Text Solution

Verified by Experts

The correct Answer is:
`vecaxx(vecaxxvecb)ne(vecaxxvecb)xxvecc`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - A (Very Short Answer type questions)|10 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (Short Answer type questions)|9 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (II. Short answer type questions)|7 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long answer type questions)|8 Videos
  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer type questions)|9 Videos

Similar Questions

Explore conceptually related problems

If veca=veci-2vecj-3veck,vecb=2veci+vecj-veck,vec(c)=i+3vecj-2veck , then compute veca . (vecbxxvec(c)) .

If veca=2veci-vecj+veck and vecb=veci-3vecj-5veck , then find |vecaxxvecb| .

If veca=2veci+3vecj+4veck,vecb=veci+vecj-veck and vec(c)=veci-vecj+veck , then compute vecaxx(vecbxxvec(c)) and verify that it is perpendicular to veca .

If veca=2veci-3vecj+veck and vecb=veci+4vecj-2veck , then find (veca+vecb)xx(veca-vecb) .

If the vectors veca=2veci-vecj+veck,vecb=veci+2vecj-3veck and vecc=3veci+pvecj+5veck are coplanar, then find p.