Home
Class 11
MATHS
If A, B, C are the angles in a triangle...

If `A, B, C ` are the angles in a triangle then prove that `sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))`

Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - A (Very Short Answer type questions)|10 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (Short Answer type questions)|9 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (II. Short answer type questions)|7 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long answer type questions)|8 Videos
  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer type questions)|9 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that sin .(A)/(2)+ sin. (B)/(2) -sin. (C)/(2)=-1+4 cos.(pi-A)/(4)cos. (pi-B)/(4)sin. (pi-C)/(4)

If A,B,C are angles in a triangle , then prove that cosA+cosB+cosC=1+4sin. (A)/(2)sin. (B)/(2) sin. (C)/(2)

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A,B, C are angles in a triangle, then prove that: sin^(2) A + sin^(2) B - sin^(2) C =2 sin A sin B cos C

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B , C are angles of a triangle, then P. T sin ^(2) . (A)/(2)+ sin^(2). (B)/(2) - sin ^(2). (C)/(2) =1-2 cos. (A)/(2) cos. (B)/(2) sin .(C)/(2)

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

If A, B , C are angles in a triangle, then the sin ^(2)A+sin ^(2)B - sin ^(2) C =2 sin A sin B cos C