Home
Class 11
MATHS
A: If y = x ^(y) then (dy)/(dx) = (y ^...

`A: If y = x ^(y) ` then ` (dy)/(dx) = (y ^(2))/(x(1- log y ))`
If `y = f (x) ^(y), ` then` (dy)/(dx) = (y ^(2) f '(x))/(f (x) [1- ylog f (x)])= (y ^(2) f'(x))/(f (x) [1- log y])`

Promotional Banner

Topper's Solved these Questions

  • MOST IMPORTANT QUESTIONS

    VGS PUBLICATION-BRILLIANT|Exercise DIFFERENTATION (LONG ANSWER TYPE QUESTIONS)|7 Videos
  • MOST IMPORTANT QUESTIONS

    VGS PUBLICATION-BRILLIANT|Exercise APPLICATION OF DIFFERENCIATION (VERY SHORT ANSWER TYPE QUESTIONS)|9 Videos
  • MOST IMPORTANT QUESTIONS

    VGS PUBLICATION-BRILLIANT|Exercise DIFFERENTATION (VERY SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • MODEL PAPER 9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C (Long answer type questions)|7 Videos

Similar Questions

Explore conceptually related problems

A : If y = sqrt( sinx + y ) then (dy)/(dx) = (cos x )/( 2y -1) R: If y = sqrt(f(x) + y) then (dy)/(dx) = (f'(x))/(2y -1).

If y=f(x)=(2x-1)/(x-2), then f(y)=

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))

If sin (x+y) = log (x + y), then dy //dx =

If x ^( log y) = log x, then prove that (dy)/(dx) = (y)/(x) ((1- log x log y)/( (log x) ^(2)))

The solution of x(dy)/(dx) + 2y = x^(2) log x is