Home
Class 11
MATHS
If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a...

If `sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y)`, then prove that `(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))`.

Text Solution

Verified by Experts

The correct Answer is:
`(sqrt(1-y^(2)))/(sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER - 7

    VGS PUBLICATION-BRILLIANT|Exercise Section - B (Short Answer Type Questions)|7 Videos
  • MATHEMATICS -II(B) MODEL PAPER -10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C|9 Videos
  • MODEL PAPER - 8

    VGS PUBLICATION-BRILLIANT|Exercise Section - C (Long Answer Type Questions)|8 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) then prove that dy/dx=(sqrt(1-y^(2)))/(sqrt(1-x^(2)) .

If sqrt(1- x ^(2)) + sqrt(1- y ^(2) ) = a (x -y) then (dy)/(dx)=

If sqrt(1+ x ^(2)) + sqrt(1 + y ^(2)) =a ( x -y) then (dy)/(dx) =

If y = e^(asin^(-1)x) then prove that (dy)/(dx) = (ay)/(sqrt(1 - x^2))

If y=e^(a sin^(-1)x) then prove that dy/dx=(ay)/(sqrt(1-x^(2)) .

Solve sqrt(1+x^(2)) sqrt(1+y^(2))dx+xy dy=0

The solution of sqrt(1 - x^(2)) dx + sqrt(1 - y^(2)) dy = 0 is