Home
Class 11
MATHS
If f(x) = log (sec x + tan x), then find...

If f(x) = log (sec x + tan x), then find f' (x).

Text Solution

Verified by Experts

The correct Answer is:
`sec x`.
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B ( Short Answer type questions)|7 Videos
  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer type questions)|9 Videos
  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise Section -C (Long Answer Type Questions)|7 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer type questions)|7 Videos
  • MODEL PAPER 2

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C (LONG ANSWER TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)= sec 3x (x in R) , then find f'(x) by first principle.

IF f(x)=log(tan e^x) , then find f'(x).

If f(x)=log(tane^(x)) , then find f'(x) .

int sec x log (sec x+ tan x)dx=

If f(x)=log(sinx) , then domain f=

If f(x) = log_(x)(lnx) then f'(x) at x = e is

f : R to (0, oo) defined by f (x) = log _(2) (x). then f ^-1(x)