Home
Class 11
MATHS
If sqrt( 1 - x^2) + sqrt( 1 - y^2) = a ...

If `sqrt( 1 - x^2) + sqrt( 1 - y^2) = a ( x -y)`, then show that `(dy)/(dx) = sqrt( 1-y^2)/sqrt( 1-x^2)`.

Text Solution

Verified by Experts

The correct Answer is:
`= sqrt( ( 1-y^2)/( 1 -x^2) )`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B ( Short Answer type questions)|7 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer type questions)|7 Videos
  • MODEL PAPER 2

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C (LONG ANSWER TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

If sqrt(1- x ^(2)) + sqrt(1- y ^(2) ) = a (x -y) then (dy)/(dx)=

If sqrt(1+ x ^(2)) + sqrt(1 + y ^(2)) =a ( x -y) then (dy)/(dx) =

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) then prove that dy/dx=(sqrt(1-y^(2)))/(sqrt(1-x^(2)) .

If y = e^(asin^(-1)x) then prove that (dy)/(dx) = (ay)/(sqrt(1 - x^2))

If y=e^(a sin^(-1)x) then prove that dy/dx=(ay)/(sqrt(1-x^(2)) .

The general solution of (dy)/(dx) + (sqrt(1 - y^(2)))/(sqrt(1 - x^(2))) = 0 is

The solution of sqrt(1 - x^(2)) dx + sqrt(1 - y^(2)) dy = 0 is