Home
Class 12
MATHS
Simplifiy i^(2)+i^(4)+i^(6)+.....+(2n...

Simplifiy
`i^(2)+i^(4)+i^(6)+.....+(2n+1)` terms

Text Solution

Verified by Experts

The correct Answer is:
`-1`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (Short Answer Type Questions)|9 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer Type Questions)|9 Videos
  • MODEL PAPER 6

    VGS PUBLICATION-BRILLIANT|Exercise Section -C (Long Answer Type Questions)|7 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C (III. LONG ANSWER TYPE QUESTIONS) |9 Videos

Similar Questions

Explore conceptually related problems

i+ i^(2) + i^(3) + i^(4) + …. + i^(100)

1+i^2+i^4+i^6+.........+i^(2n)=

Simplifiy i^(18)-3.i+i^(2)(1+i^(4))(-i)^(26)

Simplify i^18-3i^7 +i^2 (1 +i^4) (-i)^26 .

I : i^2+i^4+i^6+......(2n+1) terms = - 1 II : 1+i^2+i^4+i^6+......i^(2n)=0

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =

Simplify -2i(3+i)(2+4i)(1+i) and obtain the modulus of that complex number.

If i= sqrt-1 and n is a positive integer , then i^(n) + i^(n + 1) + i^(n + 2) + i^(n + 3) is equal to

If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .