Home
Class 12
MATHS
If z(1)=-1,z(2)=i then find Arg ((z(1))/...

If `z_(1)=-1,z_(2)=i` then find Arg `((z_(1))/(z_(2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 6

    VGS PUBLICATION-BRILLIANT|Exercise Sectio - B (Short Answer type questions)|10 Videos
  • MODEL PAPER 6

    VGS PUBLICATION-BRILLIANT|Exercise Section -C (Long Answer Type Questions)|7 Videos
  • MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise Section -C (Long Answer Type Questions)|9 Videos
  • MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (Long Answer Type Questions)|9 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=-1 and z_(2)=-i , then find Arg (z_(1)z_(2))

If z _(1) =- 1, and z _(2) =- i, then find Arg (z _(1) z _(2))

If z_(1)=(2,-1),z_(2)=(6,3) find z_(1)-z_(2)

If z^(1) =2 -I, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

If z_(1)=(6,3),z_(2)=(2,-1) , find z_(1)//z_(2) .

If (pi)/(5) and (pi)/(3) are respectively the arguments of barz_(1) and z_(2) , then the value of Arg (z_(1)- z_(2)) is

If z_(1)=(3,5) and z_(2)=(2,6) find, z_(1).z_(2)

If z_(1) , z_(2) are complex numbers and if |z_(1) + z_(2)| = |z_(1)| - |z_(2)| show that arg (z_(1)) - arg (z_(2)) = pi .