Home
Class 12
MATHS
If z (1) =- 1, z (2) = i, then find Arg ...

If `z _(1) =- 1, z _(2) = i,` then find `Arg ((z _(1))/( z _(2))).`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(2)`
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION B|7 Videos
  • MODEL PAPER 11

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C|7 Videos
  • MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION-C (III. LONG ANSWER TYPE QUESTIONS) |9 Videos
  • MODEL PAPER 12

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C|14 Videos

Similar Questions

Explore conceptually related problems

If z _(1) =- 1, and z _(2) =- i, then find Arg (z _(1) z _(2))

If z_(1)=-1 and z_(2)=-i , then find Arg (z_(1)z_(2))

If z = (1 + 2i)/(1 - (1 -i)^(2)) then find Arg z

If (pi)/(2) and (pi)/(4) are the arguments of z_(1) and barz_(2) respectively , then Arg (z_(1))/(z_(2)) =

If (pi)/(5) and (pi)/(3) are respectively the arguments of barz_(1) and z_(2) , then the value of Arg (z_(1)- z_(2)) is

If z_(1) , z_(2) are conjugate complex numbers and z_(3) , z_(4) are also conjugate , then Arg ((z_(3))/(z_(2)))=

If z^(1) =2 -I, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

Let z_(1) =2-I, z_(2) =-2 + i , Find (i) (Re(z_(1)z_(2))/barz_(1)) , (ii) Im(1/(z_(1)barz_(1)))

If |z_(1) | = |z_(2)| = 1 , then |z_(1) + z_(2)| =