Home
Class 12
MATHS
Evaluate : underset(0)overset((pi)/(4))i...

Evaluate : `underset(0)overset((pi)/(4))intlog(1+tanx)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(8)log2`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-II(B) MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos
  • MATHEMATICS-II(B) MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos
  • MATHEMATICS -II(B) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|7 Videos
  • MATHEMATICS-II(B) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)log(1+tanx)dx=

underset(0)overset(pi//2)(dx)/(4+5cosx)

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1 +tan x) dx

int_(0)^(pi//2)log(tanx)dx=

int_(0)^(pi//2)sin2xlog(tanx)dx=

underset(n=0)overset(oo)Sigma(1)/((n+1)!)=

Evaluate the integral int_(0)^(pi//4) log(1+tanx)dx

Evaluate : int_(0)^(pi//4)log(1+tanx)dx

Evaluate the definite integrals . I=underset(0)overset(1)int x. e^(-x^(2))dx

int_(0)^(pi//2)log(tanx+cotx)dx=