Home
Class 12
MATHS
int(0)^(pi) (x)/(1+cos^(2)x)dx=...

`int_(0)^(pi) (x)/(1+cos^(2)x)dx=`

Text Solution

Verified by Experts

The correct Answer is:
`(pi^(2))/(4)`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-II(B) MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise Section-B|7 Videos
  • MATHEMATICS -II(B) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|7 Videos
  • MATHEMATICS-II(B) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integrals by using substitution int_(0)^(pi/2)(sinx)/(1+cos^(2)x)dx

Evaluate the integral int_(0)^(pi) (x sinx)/(1+cos^(2)x) dx

int_(0)^(pi) (x dx)/(4 cos^(2) x + 9 sin^(2) x)=

int_(0)^(pi) (x Sin x)/(1+Cos^(2)x)dx=

int_(0)^(pi) (sin^(3)x)/(1+cos^(2)x)dx=

int_(0)^(2pi) x cos^(6) x dx=

Evaluate (iii) int_(0)^(pi)(x sin^(3)x)/(1+cos^(2)x)dx