Home
Class 12
MATHS
x^((1)/(2))((d^(2)y)/(dx^(2)))^((1)/(3))...

`x^((1)/(2))((d^(2)y)/(dx^(2)))^((1)/(3)) +x.(dy)/(dx)+y=0` has order 2 and degree 1. Prove.

Text Solution

Verified by Experts

The correct Answer is:
The order and degree of the equation are 2 and 1 respectively.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-II(B) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-B|7 Videos
  • MATHEMATICS-II(B) MODEL PAPER 4

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos
  • MATHEMATICS-II(B) MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos
  • MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise Section -C (Long Answer Type Questions)|9 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are the degrees of the differential equation (d^(2)y)/(dx^(2)) - (5dy)/(dx) + 6y = 0, ((dy)/(dx))^(3) + ((dy)/(dx))^(2) + y^(4) = 0, ((d^(3)y)/(dx^(3)))^(2) + 2 ((dy)/(dx))^(4) + (dy)/(dx) = cos x then the ascending order of a, b, c is

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If (x ^(2))/(a ^(2)) - (y ^(2))/(b ^(2)) =1 then (dy)/(dx)=

Find the order and degree, if defined, of each of the following differential equations: (i) (dy)/(dx) - cos x = 0 (ii) xy (d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2) - y (dy)/(dx) = 0 (iii) y''' + y^(2) + e^(y)' = 0

If e^(y)(x+1)=1 , show that (d^(2)y)/(dx^(2)) = ((dy)/(dx))^(2) .