Home
Class 12
MATHS
Find the centre, foci, eccentricity equa...

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola.
`16y^(2)-9x^(2)=144`

Text Solution

Verified by Experts

The correct Answer is:
-1
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS -II(B) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|7 Videos
  • MATHEMATICS -II(B) MODEL PAPER 5

    VGS PUBLICATION-BRILLIANT|Exercise SECTION -C|7 Videos
  • MATHEMATICS - II (B) MODEL PAPER 9

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long Answer type questions.)|7 Videos
  • MATHEMATICS-II(B) MODEL PAPER 3

    VGS PUBLICATION-BRILLIANT|Exercise Section-C|7 Videos

Similar Questions

Explore conceptually related problems

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola. x^(2)-4y^(2)=4

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola. 5x^(2)-4y^(2)+20x+8y=4

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola. 9x^(2)-16y^(2)+72x-32y-16=0

Find the foci, eccentricity, equations of the directrix, length of latus rectum of the hyperbola x^(2)-4y^(2)=4 .

Find the eccentricity foci, equation of the directrices and length of the latusrectum of the hyperbola x^(3) - 4y^(2) = 4

The length of the latus rectum of the hyperbola x^(2) -4y^(2) =4 is

The length of the latus rectum of the hyperbola 25x^(2)-16y^(2)=400 is

The length of the latus rectum of the parabola 3x^(2)-9x+5y-2=0 is

Find the centre eccentricity, foci, directrices and length of the lotus rectum of the hyperbolas. 4x^(2)-9y^(2)-8x-32=0

Find the centre eccentricity, foci, directrices and length of the lotus rectum of the hyperbolas. 4(y+3)^(2)-9(x-2)^(2)=1