Home
Class 12
MATHS
int(1)^(2)(e^(x)(1+x log x))/(x) dx=...

`int_(1)^(2)(e^(x)(1+x log x))/(x) dx=`

Text Solution

Verified by Experts

The correct Answer is:
`e^(x) log x + c`
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS - II (B) MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - B (II. Short Answer type questions.)|8 Videos
  • MATHEMATICS - II (B) MODEL PAPER 10

    VGS PUBLICATION-BRILLIANT|Exercise SECTION - C (III. Long Answer type questions.)|7 Videos
  • MATHEMATICS - II (B) MODEL PAPER 1

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C|7 Videos
  • MATHEMATICS - II (B) MODEL PAPER 2

    VGS PUBLICATION-BRILLIANT|Exercise SECTION C|7 Videos

Similar Questions

Explore conceptually related problems

int(x+1)^(2)e^(x)dx=

int (1)/(x^(2)) e^((x - 1)/(x)) dx =

int e^(x)( log x+(1)/(x^(2)))dx=

int e^(x) (x+1) log x dx=

int_(0)^(sqrt(e)) x log x dx

Evaluate the integerals. int e ^(x) ((1+ x log x)/(x)) dx on (0,oo).

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

int_(0)^(1)e^(x)(x^(x)+1)^(3)dx=