Home
Class 11
MATHS
The number, N>0, N=sqrt((2+sqrt(5))-sqrt...

The number, `N>0`, `N=sqrt((2+sqrt(5))-sqrt((6-3sqrt(5))+sqrt((14-6sqrt(5))))`. Then, `log_(2)N` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number N=sqrt(2+sqrt(5)-sqrt(6-3sqrt(5)+sqrt(14-6sqrt(5)))) simplifies to

(sqrt(6)+sqrt(5)+ 1/(sqrt(6)+sqrt(5)))^2

(sqrt(6)+sqrt(3))/(sqrt(5)+sqrt(2))

Simplify (1)/(sqrt(6)-sqrt(5))+sqrt(6)-sqrt(5)

(5sqrt(7)+2sqrt(7))(6sqrt(7)+3sqrt(7))=?

If (6)/(2sqrt(3)-sqrt(5))=(12sqrt(3)+6sqrt(5))/(k), then k=

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

(ii) log_(sqrt(5)+1)(6+2sqrt(5))

If ((x-2sqrt(6))(5sqrt(3)+5sqrt(2)))/(5sqrt(3)-5sqrt(2))=1, then the

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?