Home
Class 12
MATHS
Find the value of the limit lim(x->0) ((...

Find the value of the limit `lim_(x->0) ((sqrt(x^(2)-x+1)-1)/(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the limit lim_(x rarr0)(a^(sqrt(x))-a^((1)/(sqrt(x))))/(a^(sqrt(x))+a^((1)/(sqrt(x)))),a>1

The value of the limit lim_(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt(x))+a^(1//sqrt(x))),agt1, is

The value of the limit ("lim")_(xvec0)(a^(sqrt(x))-a^(1sqrt(x)))/(a^(sqrt(x))+a^(1sqrt(x))),a >1,i s 4 (b) 2 (c) -1 (d) 0

Evaluate the following limits: lim _(x->1)((sqrt(2-x)-1)/(1-x))

Evaluate the limit: lim_(x rarr1)((2x-3)(sqrt(x)-1))/(2x^(2))

The value of the limit lim_(x to 0) ((x)/(sinx))^(6//x^(2)) is

Evaluate the following limits: lim_(xrarr0)((sqrt(1+x+x^(2))-1)/(x))

The value of limit lim_(x rarr0)[(1)/(x^(2))-(1)/(sin^(2)x)]

Evaluate the following limits: lim_(xrarr0)((2^(x)-1)/(x))