Home
Class 12
MATHS
If y = e^(-x)(Acos X + Bsin x), then y i...

If `y = e^(-x)(Acos X + Bsin x)`, then y is a solution of

A

`(d^2y)/(dx^2)+2(dy)/(dx)=0`

B

`(d^2y)/(dx^2)-2(dy)/(dx)+2y=0`

C

`(d^2y)/(dx^2)+2(dy)/(dx)+2y=0`

D

`(d^2y)/(dx^2)+2y=0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the differential equation for the function \( y = e^{-x}(A \cos x + B \sin x) \), we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) Given: \[ y = e^{-x}(A \cos x + B \sin x) \] Using the product rule for differentiation: \[ \frac{dy}{dx} = \frac{d}{dx}(e^{-x}) \cdot (A \cos x + B \sin x) + e^{-x} \cdot \frac{d}{dx}(A \cos x + B \sin x) \] Calculating the derivatives: - The derivative of \( e^{-x} \) is \( -e^{-x} \). - The derivative of \( A \cos x + B \sin x \) is \( -A \sin x + B \cos x \). So we have: \[ \frac{dy}{dx} = -e^{-x}(A \cos x + B \sin x) + e^{-x}(-A \sin x + B \cos x) \] This simplifies to: \[ \frac{dy}{dx} = -e^{-x}(A \cos x + B \sin x) + e^{-x}(-A \sin x + B \cos x) \] \[ = e^{-x}(-A \sin x + B \cos x - A \cos x - B \sin x) \] \[ = e^{-x}(-A \sin x + B \cos x - A \cos x - B \sin x) \] ### Step 2: Substitute \( y \) into the expression We know: \[ y = e^{-x}(A \cos x + B \sin x) \] Thus, we can rewrite \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -y + e^{-x}(-A \sin x + B \cos x) \] ### Step 3: Differentiate \( \frac{dy}{dx} \) again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-y + e^{-x}(-A \sin x + B \cos x)\right) \] Using the product rule again: \[ \frac{d^2y}{dx^2} = -\frac{dy}{dx} + \frac{d}{dx}(e^{-x})(-A \sin x + B \cos x) + e^{-x} \frac{d}{dx}(-A \sin x + B \cos x) \] Calculating the derivatives: - The derivative of \( e^{-x} \) is \( -e^{-x} \). - The derivative of \( -A \sin x + B \cos x \) is \( -A \cos x - B \sin x \). So we have: \[ \frac{d^2y}{dx^2} = -\frac{dy}{dx} + e^{-x}(-A \cos x - B \sin x) + e^{-x}(-A \cos x - B \sin x) \] \[ = -\frac{dy}{dx} - 2e^{-x}(A \cos x + B \sin x) \] ### Step 4: Substitute \( \frac{dy}{dx} \) into the equation Now we can substitute \( \frac{dy}{dx} \) back into the equation: \[ \frac{d^2y}{dx^2} = -(-y + e^{-x}(-A \sin x + B \cos x)) - 2e^{-x}(A \cos x + B \sin x) \] \[ = y - e^{-x}(-A \sin x + B \cos x) - 2e^{-x}(A \cos x + B \sin x) \] ### Final Differential Equation Thus, we arrive at the final form of the differential equation: \[ \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The integrating factor of (d ^(2) y )/( dx ^(2)) - y = e ^(x) is e ^(-x) then its solution is

Let y=f(x) satisfy the differential equation y'+((sin x-cos x)/(e^(-x)-cos x))y=(1)/(e^(-x)-cos x) ,then find the solution

Show that the function y=Acos2x+Bsin2x is a solution of the differential equation (d^2y)/dx^2+4y=0

If y= tan ^(-1) ((acos x -bsin x )/( bcos x+asin x ) ) ,then (dy)/(dx)=

If y = y (x) is the solution of the differential equation (5 + e^(x))/(2 + y) * (dy)/(dx) + e^(x) = 0 satisfying y(0) = 1 , then a value of y (log _(e) 13) is :

If x= acos theta +bsin theta and y =bcos theta -asin theta then remove theta

If x(dy)/(dx)=y(log_(e)y-log_(e)x+1) ,then solution of the equation is

If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then x^(2) y''+ xy '=

y sec x = tan x + c is a solution of D.E . (dy)/(dx) +y tan x =sec x .