Home
Class 12
MATHS
int(1)/(Kx)dx= ....

`int(1)/(Kx)dx`=_________ .

A

`log|x|+C`

B

`log|Kx|+C`

C

`1/K log |x|+C`

D

`(-1)/(Kx^2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1}{Kx} \, dx\), we can follow these steps: ### Step 1: Factor out the constant The integral can be rewritten by factoring out the constant \(K\): \[ \int \frac{1}{Kx} \, dx = \frac{1}{K} \int \frac{1}{x} \, dx \] ### Step 2: Solve the integral of \(\frac{1}{x}\) The integral of \(\frac{1}{x}\) is a well-known result: \[ \int \frac{1}{x} \, dx = \ln |x| + C \] where \(C\) is the constant of integration. ### Step 3: Substitute back Now, substitute this result back into the equation: \[ \frac{1}{K} \int \frac{1}{x} \, dx = \frac{1}{K} (\ln |x| + C) \] This simplifies to: \[ \frac{1}{K} \ln |x| + \frac{C}{K} \] ### Step 4: Write the final answer Since \(\frac{C}{K}\) is still a constant, we can denote it as a new constant \(C'\): \[ \int \frac{1}{Kx} \, dx = \frac{1}{K} \ln |x| + C' \] Thus, the final answer is: \[ \int \frac{1}{Kx} \, dx = \frac{1}{K} \ln |x| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(xlogx)dx

int(1)/(1+cosx)dx=

int 1/(1-x) dx

int(1)/(1+sqrtx)dx=

int(1)/(1-sinx) dx

int 1/secx dx

int1/(a+be^(x))dx=

int 1/(1+cosx) dx=

int(dx)/(1+sin6x)dx=

int 1/(1+tanx) dx