Home
Class 12
MATHS
Area of a rectangle having vertices : ...

Area of a rectangle having vertices :
`A (-hat(i)+(1)/(2)hat(j)+4hat(k)), " " B(hat(i)+(1)/(2)hat(j)+4hat(k))`,
`C(hat(i)-(1)/(2)hat(j)+4hat(k)), " " D(-hat(i)-(1)/(2)hat(j)+4hat(k))` is :

A

`1/2`

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the area of the rectangle having vertices A, B, C and D with positive vectors -hat(i)+(1)/(2) hat(j)+4hat(k), hat(i)+(1)/(2)hat(j)+4hat(k), hat(i)-(1)/(2) hat(j)+4hat(k) and -hat(1)-(1)/(2) hat(j)+4hat(k) ?

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Area of a rectangle having vertices A, B, C and D with position vectors - hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k and - hat i-1/2 hat j+4 hat k respectively is (A) 1/2 (B) 1 (C) 2 (D) 4

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4hat(k), -2hat(i)+4hat(j)-2hat(k), 4hat(i)-2hat(k) and hat(i)-hat(j)+hat(k) .

Express -hat(i)-3hat(j)+4hat(k) as the linear combination of the vectors 2hat(i)+hat(j)-4hat(k) , 2hat(i)-hat(j)+3hat(k) and 3hat(i)+hat(j)-2hat(k) .