Home
Class 12
MATHS
Find the value of lamda such that the ve...

Find the value of `lamda` such that the vectors `vec(a)=2hat(i)+lamda hat(j)+hat(k)` and `vec(b)=hat(i)+2hat(j)+3hat(k)` are orthogonal.

A

0

B

1

C

`3/2`

D

`(-5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the vectors \( \vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k} \) and \( \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} \) are orthogonal, we need to use the property that two vectors are orthogonal if their dot product is zero. ### Step-by-step Solution: 1. **Write down the vectors**: \[ \vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} + 3\hat{k} \] 2. **Calculate the dot product**: The dot product \( \vec{a} \cdot \vec{b} \) is calculated as follows: \[ \vec{a} \cdot \vec{b} = (2\hat{i} + \lambda \hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) \] Using the distributive property of the dot product: \[ \vec{a} \cdot \vec{b} = 2 \cdot 1 + \lambda \cdot 2 + 1 \cdot 3 \] 3. **Simplify the expression**: \[ \vec{a} \cdot \vec{b} = 2 + 2\lambda + 3 \] \[ \vec{a} \cdot \vec{b} = 5 + 2\lambda \] 4. **Set the dot product to zero** (since the vectors are orthogonal): \[ 5 + 2\lambda = 0 \] 5. **Solve for \( \lambda \)**: \[ 2\lambda = -5 \] \[ \lambda = -\frac{5}{2} \] ### Final Answer: The value of \( \lambda \) is \( -\frac{5}{2} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Find the angel between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat k

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 3hat(i)+hat(j)+2hat(k) and vec(c )=hat(i)+lambda hat(j)-3hat(k)

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

For what value of lamda are the vectors lamda hat(i)+ (1+ lamda) hat(j) + (1+ 2lamda) hat(k) and (1- lamda) hat(i) + hat(lamda) hat(j) + 2hat(k) perpendicular?

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).