Home
Class 12
MATHS
The vectors from origin to the points A ...

The vectors from origin to the points A and B are `vec(a)=2hat(i)-3hat(j)+2hat(k)` and `vec(b)=2hat(i)+3hat(j)+hat(k)` respectively then the area of triangle OAB is

A

340

B

`sqrt(25)`

C

`sqrt(229)`

D

`(1)/(2)sqrt(229)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle OAB formed by the vectors \(\vec{a}\) and \(\vec{b}\), we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 2\hat{k} \] \[ \vec{b} = 2\hat{i} + 3\hat{j} + \hat{k} \] ### Step 2: Calculate the cross product \(\vec{a} \times \vec{b}\) To find the area of triangle OAB, we need to calculate the cross product of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix} \] ### Step 3: Compute the determinant Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -3 & 2 \\ 3 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 2 \\ 2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -3 \\ 2 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} -3 & 2 \\ 3 & 1 \end{vmatrix} = (-3)(1) - (2)(3) = -3 - 6 = -9 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & 2 \\ 2 & 1 \end{vmatrix} = (2)(1) - (2)(2) = 2 - 4 = -2 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -3 \\ 2 & 3 \end{vmatrix} = (2)(3) - (-3)(2) = 6 + 6 = 12 \] Putting it all together: \[ \vec{a} \times \vec{b} = -9\hat{i} + 2\hat{j} + 12\hat{k} \] ### Step 4: Find the magnitude of the cross product Now, we find the magnitude of \(\vec{a} \times \vec{b}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(-9)^2 + 2^2 + 12^2} = \sqrt{81 + 4 + 144} = \sqrt{229} \] ### Step 5: Calculate the area of triangle OAB The area \(A\) of triangle OAB is given by: \[ A = \frac{1}{2} |\vec{a} \times \vec{b}| \] Thus, \[ A = \frac{1}{2} \sqrt{229} \] ### Final Answer The area of triangle OAB is: \[ \frac{1}{2} \sqrt{229} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The vector from origion to the point A and B are vec(A)=3hat(i)-6hat(j)+2hat(k) and vec(B)=2hat(i)+hat(j)-2hat(k) ,respectively. Find the area of the triangle OAB.

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by vec(OA) and vec(OB) as adjacent sides.

The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(j)+2hat(k) and vec(b)= 2hat(i) +hat(j)-2hat(k) respectively. Find the area of : (i) the triangle OAB (ii) the parallelogram formed by (OA) and (OB) as adjacent sides.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)(hat(i)-2hat(j)+3hat(k)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-