Home
Class 12
MATHS
If |vec(a)|=10,|vec(b)|=2 and vec(a)*vec...

If `|vec(a)|=10,|vec(b)|=2` and `vec(a)*vec(b)=12`, then the value of the `|vec(a)xxvec(b)|` is

A

5

B

10

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the cross product of two vectors \(\vec{a}\) and \(\vec{b}\) given the following information: 1. \(|\vec{a}| = 10\) 2. \(|\vec{b}| = 2\) 3. \(\vec{a} \cdot \vec{b} = 12\) ### Step-by-Step Solution: **Step 1: Use the dot product formula.** The dot product of two vectors can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] where \(\theta\) is the angle between the two vectors. **Step 2: Substitute the known values into the dot product formula.** Given: - \(|\vec{a}| = 10\) - \(|\vec{b}| = 2\) - \(\vec{a} \cdot \vec{b} = 12\) Substituting these values into the formula gives: \[ 12 = 10 \cdot 2 \cdot \cos \theta \] This simplifies to: \[ 12 = 20 \cos \theta \] **Step 3: Solve for \(\cos \theta\).** Rearranging the equation to find \(\cos \theta\): \[ \cos \theta = \frac{12}{20} = \frac{3}{5} \] **Step 4: Use the Pythagorean identity to find \(\sin \theta\).** We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\cos \theta = \frac{3}{5}\): \[ \sin^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{9}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} \] Taking the square root gives: \[ \sin \theta = \frac{4}{5} \] **Step 5: Use the cross product formula to find \(|\vec{a} \times \vec{b}|\).** The magnitude of the cross product is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Substituting the known values: \[ |\vec{a} \times \vec{b}| = 10 \cdot 2 \cdot \frac{4}{5} \] Calculating this gives: \[ |\vec{a} \times \vec{b}| = 20 \cdot \frac{4}{5} = 16 \] ### Final Answer: The value of \(|\vec{a} \times \vec{b}|\) is \(16\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec(c)|=10, |vec(b)|=2 and vec(a)*vec(b)=12 , then what is the value of |vec(a)xxvec(b)| ?

If |vec(a)|=10 |vec(b)|=2 and vec(a).vec(b)=12 , then what is the value of |vec(a) xx vec(b)| ?

If |vec a|=2|vec b|=5 and |vec a xxvec b|=8, then find the value of vec a.vec b.

Given |vec a|=10,|vec b|=2 and vec avec b=12, find |vec a xxvec b|

If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) , then the value of |vec(A)+vec(B)| is

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

If |vec(a)|=2 and |vec(b)|=3 , then |vec(a)xxvec(b)|^(2)+|vec(a).vec(b)|^(2) is equal to

If | vec a | = 2, | vec b | = 7 and vec a xxvec b = 3vec i + 2vec j + 6vec k then vec a * vec b =

(vec a xxvec b)^(2)+(vec a*vec b)^(2)=144 and |vec a|=4 then find the value of |vec b|

Let vec a and vec b besuch that |vec a xxvec b|=9 then the value of [vec avec bvec a xxvec b]=