Home
Class 12
MATHS
The vectors lamdahat(i)+hat(j)+2hat(k),...

The vectors `lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k)` and `2hat(i)-hat(j)+lamda hat(k)` are coplanar, if

A

`lamda=-2`

B

`lamda=0`

C

`lamda=1`

D

`lamda=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \lambda \hat{i} + \hat{j} + 2 \hat{k} \), \( \hat{i} + \lambda \hat{j} - \hat{k} \), and \( 2 \hat{i} - \hat{j} + \lambda \hat{k} \) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. ### Step-by-step Solution: 1. **Identify the Vectors**: Let: \[ \mathbf{A} = \lambda \hat{i} + \hat{j} + 2 \hat{k} \] \[ \mathbf{B} = \hat{i} + \lambda \hat{j} - \hat{k} \] \[ \mathbf{C} = 2 \hat{i} - \hat{j} + \lambda \hat{k} \] 2. **Set Up the Determinant**: The vectors are coplanar if the determinant of the matrix formed by their components is zero: \[ \begin{vmatrix} \lambda & 1 & 2 \\ 1 & \lambda & -1 \\ 2 & -1 & \lambda \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: We will compute the determinant using the formula for a \( 3 \times 3 \) matrix: \[ D = \lambda \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ 2 & \lambda \end{vmatrix} + 2 \begin{vmatrix} 1 & \lambda \\ 2 & -1 \end{vmatrix} \] - First, calculate the smaller determinants: \[ \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 - 1 \] \[ \begin{vmatrix} 1 & -1 \\ 2 & \lambda \end{vmatrix} = \lambda - 2 \] \[ \begin{vmatrix} 1 & \lambda \\ 2 & -1 \end{vmatrix} = -1 - 2\lambda = -1 - 2\lambda \] - Substitute these back into the determinant: \[ D = \lambda(\lambda^2 - 1) - 1(\lambda - 2) + 2(-1 - 2\lambda) \] \[ = \lambda^3 - \lambda - \lambda + 2 - 2 - 4\lambda \] \[ = \lambda^3 - 6\lambda \] 4. **Set the Determinant to Zero**: For coplanarity, we set the determinant equal to zero: \[ \lambda^3 - 6\lambda = 0 \] Factor out \( \lambda \): \[ \lambda(\lambda^2 - 6) = 0 \] 5. **Solve for \( \lambda \)**: This gives us: \[ \lambda = 0 \quad \text{or} \quad \lambda^2 - 6 = 0 \] Solving \( \lambda^2 - 6 = 0 \): \[ \lambda^2 = 6 \implies \lambda = \sqrt{6} \quad \text{or} \quad \lambda = -\sqrt{6} \] ### Final Answer: The vectors are coplanar if: \[ \lambda = 0, \quad \lambda = \sqrt{6}, \quad \text{or} \quad \lambda = -\sqrt{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

The number of distinct real values of lambda , for which the vectors -lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k) are coplanar, is

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

Find lamda , if the vectors bar(a)=hat(i)+hat(j)+hat(k),bar(b)=hat(i)-hat(j)+hat(k)andbar(c)=2hat(i)+3hat(j)+lamdahat(k) are coplanar.

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

The value of 'lambda' such that the vectors : 3hat(i)+lambdahat(j)+5hat(k), hat(i)+2hat(j)-3hat(k) and 2hat(i)-hat(j)+hat(k) are coplanar is __________.

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is