Home
Class 12
MATHS
The projection of vec(A) on vec(B) is :-...

The projection of `vec(A)` on `vec(B)` is :-

A

`((vec(a)*vec(b))/(|vec(b)|))vec(b)`

B

`(vec(a)*vec(b))/(|vec(b)|)`

C

`(vec(a)*vec(b))/(|vec(a)|)`

D

`((vec(a)*vec(b))/(|vec(a)|^(2)))vec(b)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

(i) Find the projection of vec(a) on vec(b) if vec(a).vec(b)=8 and vec(b)=(2hat(i)+6hat(j)+3hat(k)) . (ii) Write the projection of the vector (hat(i)+at(j)) on the vector (hat(i)-hat(j)) .

Consider A(2, 3, 4), B(4, 3,2) and C(5,2,-1) be any three points. (a) Find the projection of vec(BC ) on vec(AB) . (b) Find the area of triangle ABC.

Show that the projection of vec(b) on vec(a) ne vec(0) is : ((vec(a).vec(b))/(|vec(a)|^(2)))vec(a) .

Let vec(a)=2hat(i)+3hat(j)-hat(k) , vec(b)=-hat(i)+3hat(j)+4hat(K) . Evaluate (i) |vec(a)|,|vec(b)| (ii) vec(a).vec(b) (iii) the angle between the vectors vec(a) and vec(b) (iv) the projection of vec(a) on vec(b) (v) the projection of vec(b) on vec(a) area of the DeltaAOB where O is origin

Let vec(a)=(2hat(i)+3hat(j)+2 hat(k)) and vec(b)=(hat(i)+2hat(j)+hat(k)) . Find the projection of (i) vec(a) on vec(b) and (ii) vec(b) on vec(a) .

Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+2hat(j)-hat(k) and vec(b)=2hat(i)-hat(j)-4hat(k)