Home
Class 12
MATHS
If vec(a),vec(b) and vec(c ) are three v...

If `vec(a),vec(b)` and `vec(c )` are three vectors such that `vec(a)+vec(b)+vec(c )=vec(0)` and `|vec(a)|=2,|vec(b)|=3` and `|vec(c )|=5` , then the value of `vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a)` is

A

0

B

1

C

`-19`

D

38

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a),vec(b)+vec(b).vec(c )+vec(c ).vec(a) .

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

Let vec a , vec b , vec c are three vectors , such that vec a + vec b + vec c = vec 0 .If , |vec a|=3 , |vec b|=4 and | vec c|=5 , then the value of, |vec a+vec b|^(2) + |vec b-vec c|^(2) + |vec c+vec a|^(2) , equal to :

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is |vec(a)+vec(b)| equal to ?

If vec a,vec b,vec c are three vectors such that vec a+vec b+vec c=vec 0 and |vec a|=3,|b|=4,|vec c|=5 Find the value of vec a*vec b+vec b*vec c+vec c*vec a

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c