Home
Class 12
MATHS
A class XII student appearing for a comp...

A class XII student appearing for a competitive examination was asked to attempt the following questions.
Let `vec(a),vec(b)` and `vec( c)` be theree non zero vectors.
If `vec(a)=hat(i)-2hat(j),vec(b)=2hat(i)+hat(j)+3hat(k)` then evaluate `(2vec(a)+hat(b))*[(vec(a)+vec(b))xx(vec(a)-2vec(b))]`

A

0

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will evaluate the expression \( (2\vec{a} + \vec{b}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b})] \) step by step. ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} - 2\hat{j} \] \[ \vec{b} = 2\hat{i} + \hat{j} + 3\hat{k} \] ### Step 2: Calculate \( 2\vec{a} + \vec{b} \) First, we calculate \( 2\vec{a} \): \[ 2\vec{a} = 2(\hat{i} - 2\hat{j}) = 2\hat{i} - 4\hat{j} \] Now, add \( \vec{b} \): \[ 2\vec{a} + \vec{b} = (2\hat{i} - 4\hat{j}) + (2\hat{i} + \hat{j} + 3\hat{k}) = (2 + 2)\hat{i} + (-4 + 1)\hat{j} + 3\hat{k} = 4\hat{i} - 3\hat{j} + 3\hat{k} \] ### Step 3: Calculate \( \vec{a} + \vec{b} \) \[ \vec{a} + \vec{b} = (\hat{i} - 2\hat{j}) + (2\hat{i} + \hat{j} + 3\hat{k}) = (1 + 2)\hat{i} + (-2 + 1)\hat{j} + 3\hat{k} = 3\hat{i} - \hat{j} + 3\hat{k} \] ### Step 4: Calculate \( \vec{a} - 2\vec{b} \) First, calculate \( 2\vec{b} \): \[ 2\vec{b} = 2(2\hat{i} + \hat{j} + 3\hat{k}) = 4\hat{i} + 2\hat{j} + 6\hat{k} \] Now, subtract: \[ \vec{a} - 2\vec{b} = (\hat{i} - 2\hat{j}) - (4\hat{i} + 2\hat{j} + 6\hat{k}) = (1 - 4)\hat{i} + (-2 - 2)\hat{j} + (-6)\hat{k} = -3\hat{i} - 4\hat{j} - 6\hat{k} \] ### Step 5: Calculate the cross product \( (\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b}) \) Using the vectors calculated: \[ \vec{u} = 3\hat{i} - \hat{j} + 3\hat{k} \] \[ \vec{v} = -3\hat{i} - 4\hat{j} - 6\hat{k} \] The cross product is calculated using the determinant: \[ \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 3 \\ -3 & -4 & -6 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 3 \\ -4 & -6 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 3 \\ -3 & -6 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ -3 & -4 \end{vmatrix} \] Calculating each determinant: \[ = \hat{i}((-1)(-6) - (3)(-4)) - \hat{j}((3)(-6) - (3)(-3)) + \hat{k}((3)(-4) - (-1)(-3)) \] \[ = \hat{i}(6 + 12) - \hat{j}(-18 + 9) + \hat{k}(-12 - 3) \] \[ = 18\hat{i} + 9\hat{j} - 15\hat{k} \] ### Step 6: Calculate the dot product \( (2\vec{a} + \vec{b}) \cdot [(\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b})] \) Now we have: \[ (2\vec{a} + \vec{b}) = 4\hat{i} - 3\hat{j} + 3\hat{k} \] And: \[ (\vec{a} + \vec{b}) \times (\vec{a} - 2\vec{b}) = 18\hat{i} + 9\hat{j} - 15\hat{k} \] Now calculate the dot product: \[ (4\hat{i} - 3\hat{j} + 3\hat{k}) \cdot (18\hat{i} + 9\hat{j} - 15\hat{k}) = (4)(18) + (-3)(9) + (3)(-15) \] \[ = 72 - 27 - 45 = 0 \] ### Final Answer The value of the expression is \( 0 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)-3hat(j)-hat(k), vec(b)=hat(i)+4hat(j)-2hat(k) , then what is (vec(a)+vec(b))xx(vec(a)-vec(b)) equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .