Home
Class 12
MATHS
A class XII student appearing for a comp...

A class XII student appearing for a competitive examination was asked to attempt the following questions.
Let `vec(a),vec(b)` and `vec( c)` be theree non zero vectors. If `vec (a)=hat(i)-2hat(j)`, `vec(b)=2hat(i)+hat(j)+3hat(k)` then
The area of the parallelogram formed by `vec(a)` and `vec(b)` as diagonals is

A

70

B

35

C

`(sqrt(70))/(2)`

D

`sqrt(70)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the parallelogram formed by the vectors \(\vec{a}\) and \(\vec{b}\) as diagonals, we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{a} = \hat{i} - 2\hat{j} \] \[ \vec{b} = 2\hat{i} + \hat{j} + 3\hat{k} \] ### Step 2: Calculate the cross product \(\vec{a} \times \vec{b}\) The area of the parallelogram formed by two vectors \(\vec{u}\) and \(\vec{v}\) is given by the magnitude of the cross product of the vectors. We will first set up the determinant for the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 0 \\ 2 & 1 & 3 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -2 & 0 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -2 & 0 \\ 1 & 3 \end{vmatrix} = (-2)(3) - (0)(1) = -6\) 2. \(\begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix} = (1)(3) - (0)(2) = 3\) 3. \(\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-2)(2) = 1 + 4 = 5\) Putting it all together: \[ \vec{a} \times \vec{b} = -6\hat{i} - 3\hat{j} + 5\hat{k} \] ### Step 4: Find the magnitude of the cross product Now we find the magnitude of \(\vec{a} \times \vec{b}\): \[ |\vec{a} \times \vec{b}| = \sqrt{(-6)^2 + (-3)^2 + (5)^2} \] Calculating the squares: \[ = \sqrt{36 + 9 + 25} = \sqrt{70} \] ### Step 5: Calculate the area of the parallelogram The area \(A\) of the parallelogram formed by the vectors \(\vec{a}\) and \(\vec{b}\) as diagonals is given by: \[ A = \frac{1}{2} |\vec{a} \times \vec{b}| \] Substituting the magnitude we found: \[ A = \frac{1}{2} \sqrt{70} \] ### Final Answer Thus, the area of the parallelogram is: \[ \frac{\sqrt{70}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=4hat(i)+hat(j)-hat(k) , vec(b)=3hat(i)-2hat(j)+2hat(k) , then the value of |vec(a)-vec(b)-vec(c)| is :-

If vec(a)=(hat(i)+2hat(j)-3hat(k)) and vec(b)=(3hat(i)-hat(j)+2hat(k)) then the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) is

Let vec(a)=hat(i)+2hat(j) and vec(b)=2hat(i)+hat(j) . (i) Then, |vec(a)|=|vec(b)| (ii) Then vectors vec(a) and vec(b) are equal.

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?