Home
Class 10
MATHS
A(4,2), B(6,5) and C(1,4) are the vertic...

A(4,2), B(6,5) and C(1,4) are the vertices of `triangle ABC `
Using centroid formula , find coordinates of centroid G and write
your observation of points P, Q and G .

Promotional Banner

Topper's Solved these Questions

  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise NCERT EXEMPLAR (EXERCISE - 7.1)|20 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise NCERT EXEMPLAR (EXERCISE - 7.2)|12 Videos
  • LINES (IN TWO - DIMENSIONS)

    OSWAL PUBLICATION|Exercise NCERT CORNER (TEXTBOOK QUESTIONS) (EXERCISE - 7.3)|7 Videos
  • INTRODUCTION TO TRIGONOMETRY AND TRIGONOMETRIC IDENTITIES

    OSWAL PUBLICATION|Exercise BOARD CORNER (Long Solution Type Questions)|6 Videos
  • LINES (IN TWO DIMENSIONS)

    OSWAL PUBLICATION|Exercise CASE - BASED MCQs |15 Videos

Similar Questions

Explore conceptually related problems

A(4,2), B(6,5) and C(1,4) are the vertices of triangle ABC Find coordinates of points P on AD such that AP : PD= 2: 1 .

If A(-1, 0), B(5, -2) and C(8, 2) are the vertices of a Delta ABC then its centroid is

Let A (4,2) , B (6,5) and C (1,4) be the vertices of Delta ABC . What do you observe?

If A(a,2,2),B(a,b,1) and C(1,2,-2) are the vertices of triangle ABC and G(2,1,c) is centroid, then values of a,b and c are

If A(5,-1),B(-3,-2) and (-1,8) are the vertices of triangle ABC,find the length of median through A and the coordinates of the centroid.

Points A(3,5) , B (-1,4) and C( 7,-6) are the vertices of Delta ABC. Find the coordinates of the centroid of the triangle

Let A(5,6), B(-2,3) and C(6,-1) be the vertices of Delta ABC . Find the coordinates of the centroid of the triangle.

A(4,2),B(6,5) and C(1,4) are the vertices of ABC. Find the coordinates of point P on AD such that AP:PD=2:1.

A(h,-6),B(2,3) and C(-6,k) are the coordinates of vertices of a triangle whose centroid is G(1,5). Find h and k.

Let A (4, 2), B(6, 5) and C(1, 4) be the vertices of Delta A B C . (i) The median from A meets BC at D. Find the coordinates of the point D. (ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1 (iii) Find the coordinates of points Q and R on medians BE and CF respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1. (iv) What do you observe? (v) If A(x_(1),y_(1)), B(x_(2),y_(2)) and C(x_(3),y_(3)) are the vertices of ∆ ABC, find the coordinates of the centroid of the triangle.