Home
Class 10
MATHS
Prove that (sin theta - cos theta + 1)/(...

Prove that `(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = (1)/(sec theta - tan theta)` using the identity `sec^(2) theta = 1 + tan^(2) theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin theta -cos theta+1 )/( sin theta + cos theta -1) =(1)/( sec theta -tan theta ) [use the identity sec ^(2) theta =1 +tan ^(2) theta ]

((1+ sin theta - cos theta )/( 1+ sin theta + cos theta ))^(2)=

Prove that (1 + sec theta) / sec theta = sin^2 theta /(1 - cos theta)

(cos theta )/( sec theta + tan theta ) + ( cos theta )/( sec theta - tan theta ) =

( sec theta + tan theta -1)/( tan theta - sec theta +1)

Show that (1)/(cos theta) - cos theta = tan theta. sin theta

Prove that (1+cot theta -"cosec" theta ) (1+ tan theta + sec theta )=2 .

Show that (1 + sin theta)/ cos theta + cos theta / (1 + sin theta) = 2 sec theta

(1+ sin theta - cos theta )/( 1+ sin theta + cos theta ) + (1+ sin theta + cos theta )/( 1+ sin theta - cos theta ) =

(cos theta + sin theta )/( cos theta - sin theta )-(cos theta - sin theta )/( cos theta + sin theta ) =