Home
Class 12
MATHS
Sn=sum(r=1)^ntr=(n(2n^2+9n+13))/(6) Find...

`S_n=sum_(r=1)^nt_r=(n(2n^2+9n+13))/(6)` Find `sum_(t=1)^(oo)1/(rsqrtt_r)`

Text Solution

Verified by Experts

The correct Answer is:
`1.00`
Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n)=sum_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13), then sum_(r=1)^(oo)(1)/(r*sqrt(t)) equals

If sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13), then find the sum sum_(r=1)^(n)sqrt(T_(r))

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If sum_(r=1)^(n)t_(r)=(n)/(8)(n+1)(n+2)(n+3), then find sum_(r=1)^(n)(1)/(t_(r)).

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13); then find the value of sum_(r=1)^(n)sqrt(T_(r))

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2))/(6), then the value of sum_(r=1)^(oo)((1)/(T_(r))) is equal to