Home
Class 14
MATHS
8^4-8^2=?...

`8^4-8^2=?`

A

64

B

512

C

4032

D

4096

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 8^4 - 8^2 \), we can follow these steps: ### Step 1: Factor out the common term We notice that both terms in the expression share a common factor of \( 8^2 \). We can factor \( 8^2 \) out of the expression: \[ 8^4 - 8^2 = 8^2(8^2 - 1) \] ### Step 2: Simplify the expression inside the parentheses Next, we simplify the expression inside the parentheses: \[ 8^2 - 1 \] We know that \( 8^2 = 64 \), so: \[ 8^2 - 1 = 64 - 1 = 63 \] ### Step 3: Substitute back into the factored expression Now we substitute back into our factored expression: \[ 8^2(8^2 - 1) = 8^2 \cdot 63 \] ### Step 4: Calculate \( 8^2 \) We already calculated \( 8^2 \): \[ 8^2 = 64 \] ### Step 5: Multiply the results Now we multiply \( 64 \) by \( 63 \): \[ 64 \cdot 63 \] To calculate \( 64 \cdot 63 \), we can break it down: \[ 64 \cdot 63 = 64 \cdot (60 + 3) = 64 \cdot 60 + 64 \cdot 3 \] Calculating each part: \[ 64 \cdot 60 = 3840 \] \[ 64 \cdot 3 = 192 \] Now add these two results together: \[ 3840 + 192 = 4032 \] ### Final Answer Thus, the final answer is: \[ 8^4 - 8^2 = 4032 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 8x^4-8x^2+7 is divided by 2x+1 the remainder is

If 8x^(4)-8x^(2)+7 is divided by 2x+1 , the remainder is

If : y=cos^(-1)(8x^(4)-8x^(2)+1)," then: "(dy)/(dx)=

If =sin^(-1)(3t-4t^(3)),y=cos^(-1)(8t^(4)-8t^(2)+1) then (dy)/(dx)=

Simplify and express each the following in exponential from: {(2^3)^4xx2^8}-:2^(12) (ii) (8^2xx8^4)-:8^3

8^(7)xx2^(6)-:8^(2.4)=8^(?) a.6.6b.8.6c.9.6d.10.6

(-8b^(2)+4b-8)+(-2b^(2)-5b-1)

(64)^(4)-:(8)^(5)=?(8)^(8)b.(8)^(2) c.(8)^(12)d.(8)^(4)

4(2-x)=8