Home
Class 14
MATHS
(12^2-4^2)/(9^2-3^2) =?...

`(12^2-4^2)/(9^2-3^2)` =?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((12^2 - 4^2) / (9^2 - 3^2)\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a - b)(a + b)\). ### Step-by-Step Solution: 1. **Identify the squares in the numerator and denominator**: - The numerator is \(12^2 - 4^2\). - The denominator is \(9^2 - 3^2\). 2. **Apply the difference of squares formula to the numerator**: \[ 12^2 - 4^2 = (12 - 4)(12 + 4) \] - Calculate \(12 - 4 = 8\) and \(12 + 4 = 16\). - So, the numerator becomes: \[ 8 \times 16 \] 3. **Apply the difference of squares formula to the denominator**: \[ 9^2 - 3^2 = (9 - 3)(9 + 3) \] - Calculate \(9 - 3 = 6\) and \(9 + 3 = 12\). - So, the denominator becomes: \[ 6 \times 12 \] 4. **Rewrite the expression**: \[ \frac{12^2 - 4^2}{9^2 - 3^2} = \frac{8 \times 16}{6 \times 12} \] 5. **Simplify the fraction**: - First, calculate \(8 \times 16 = 128\) and \(6 \times 12 = 72\). - So, we have: \[ \frac{128}{72} \] 6. **Reduce the fraction**: - Find the greatest common divisor (GCD) of 128 and 72, which is 8. - Divide both the numerator and the denominator by 8: \[ \frac{128 \div 8}{72 \div 8} = \frac{16}{9} \] 7. **Final answer**: \[ \frac{12^2 - 4^2}{9^2 - 3^2} = \frac{16}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2sin^(-1)((9-4x^(2))/(9+4x^(2)))+3cos^(-1)((12x)/(9+4x^(2)))+tan^(-1)((12x)/(9-4x^(2)))=lambda(pi)/(2) for x=(-17)/(13) "then" lambda

Find sum of first 15 term of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7)+(12(1^(2)+2^(2)+3^(2)+4^(2)))/(9) (1) 7620 (2) 7280 (3) 7820 (4) 7067

The equation of the ellipse whose vertices are (9,2),(-1,2) and the distance between the foci is 8 unit is (A)9(x-3)^(2)+25(y-4)^(2)=225(B)9(x+3)^(2)+25(y+4)^(2)=225(C)9(x-4)^(2)+25(y-3)^(2)=225(D)9(x+4)^(2)+25(y+3)^(2)=225

12^(2)+9^(2)=?+108

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?

if x=(2^(-2) - 2^(-3)) ,y=(2^(-3) - 2^(-4)) ,z=(2^(-4) - 2^(-2)) then the value of x^3 + y^3 + z^3 = 0 1 -9/2048 -9/1024

1.2^(2)+2.3^(2)+3.4^(2)+

Q.11The domain of the function f(x)= sin^-1(x-3)/sqrt(9-x^2) is (1) [2,3](2) [2,3)(3)[1,2](4) [1,2)