Home
Class 14
MATHS
If x+y=20 and xy=84 then (x)^2+(y)^2=?...

If x+y=20 and xy=84 then `(x)^2+(y)^2=?`

A

232

B

400

C

128

D

can not be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 \) given that \( x + y = 20 \) and \( xy = 84 \). ### Step-by-Step Solution: 1. **Use the identity for the square of a sum**: We know that: \[ (x + y)^2 = x^2 + y^2 + 2xy \] This can be rearranged to find \( x^2 + y^2 \): \[ x^2 + y^2 = (x + y)^2 - 2xy \] 2. **Substitute the known values**: From the problem, we know: - \( x + y = 20 \) - \( xy = 84 \) Now, we can substitute these values into the rearranged formula: \[ x^2 + y^2 = (20)^2 - 2(84) \] 3. **Calculate \( (20)^2 \)**: \[ (20)^2 = 400 \] 4. **Calculate \( 2 \times 84 \)**: \[ 2 \times 84 = 168 \] 5. **Substitute back into the equation**: Now we substitute these results back into the equation: \[ x^2 + y^2 = 400 - 168 \] 6. **Perform the subtraction**: \[ 400 - 168 = 232 \] 7. **Final result**: Therefore, the value of \( x^2 + y^2 \) is: \[ x^2 + y^2 = 232 \] ### Conclusion: The answer is \( 232 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+y^2=7 and xy=2 then x^4-2x^2y^2+y^4=

If xy=6 and x^2y+xy^2+x+y=63 then x^2+y^2=

If x + y = 10 and xy = 16 , then the values of x^2 - xy + y^2 and x^2 + x y + y^2 are

If x+y=52 and x-y=20 , then what is the value of x:y ?

If x:y::5:2, then (x ^(2) +y)/(x + y ^(2)) =?

If xy = 6 and x^(2) y + xy^(2) + x+y =63 , then the value of x^(2) +y^(2) is

If x+y=9 and xy=20, then find the value of x^(2)+y^(2)