Home
Class 8
MATHS
Add product : ab(a - b), bc(b - c), ca(c...

Add product : `ab(a - b), bc(b - c), ca(c - a)`

Text Solution

Verified by Experts

The correct Answer is:
`a^(2) + b^(2) + c^(2) - ab - bc - ca`
Promotional Banner

Similar Questions

Explore conceptually related problems

Add the product:a(a-b), b(b-c), c(c-a).

Add the product: a(a+b),b(b+c),c(c+a)

Find the product (a-b-c) (a ^(2) + b ^(2) + c ^(2) - ab + bc-ca) without actual multiplication.

Find the product [{:(0,c,-b),(-c,0,a),(n,-a,0):}][{:(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2):}]

Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Prove {:[( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) ]:} = 3( a+b+c) ( ab+bc+ca)