Home
Class 12
CHEMISTRY
Calculate the equivalent conductance of ...

Calculate the equivalent conductance of `NH_4OH` at infinite dilution using Kohlrausch law. Given that `Lambda_(0)` values of `NaOH, NaCI and NH_4Cl` are respectively 217.4, 108.9 and `129"ohm"^(-1) cm^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the equivalent conductance of `NH₄OH` at infinite dilution using Kohlrausch's law, we can follow these steps: ### Step 1: Understand Kohlrausch's Law Kohlrausch's law states that the equivalent conductance at infinite dilution (Λ₀) of an electrolyte can be expressed as the sum of the conductances of its individual ions at infinite dilution. For `NH₄OH`, we can express it as: \[ \Lambda_0(NH_4OH) = \Lambda_0(NH_4^+) + \Lambda_0(OH^-) \] ### Step 2: Relate `NH₄OH` to Known Electrolytes We can relate the ions of `NH₄OH` to the known electrolytes `NH₄Cl` and `NaOH`. The relationship can be established using the following equation: \[ \Lambda_0(NH_4OH) = \Lambda_0(NH_4^+) + \Lambda_0(OH^-) = \Lambda_0(NH_4Cl) - \Lambda_0(Cl^-) + \Lambda_0(NaOH) - \Lambda_0(Na^+) \] ### Step 3: Substitute Known Values We have the following values: - \(\Lambda_0(NH_4Cl) = 129 \, \Omega^{-1} cm^2\) - \(\Lambda_0(NaOH) = 217.4 \, \Omega^{-1} cm^2\) - \(\Lambda_0(NaCl) = 108.9 \, \Omega^{-1} cm^2\) Using the relationship established in Step 2, we can substitute these values into the equation: \[ \Lambda_0(NH_4OH) = \Lambda_0(NH_4Cl) - \Lambda_0(Cl^-) + \Lambda_0(NaOH) - \Lambda_0(Na^+) \] ### Step 4: Calculate the Equivalent Conductance We know that \(\Lambda_0(Cl^-) = \Lambda_0(NaCl) - \Lambda_0(Na^+)\). Since \(\Lambda_0(Na^+) = \Lambda_0(Cl^-)\), we can simplify our equation: \[ \Lambda_0(NH_4OH) = \Lambda_0(NH_4Cl) + \Lambda_0(NaOH) - \Lambda_0(NaCl) \] Substituting the values: \[ \Lambda_0(NH_4OH) = 129 + 217.4 - 108.9 \] Calculating this gives: \[ \Lambda_0(NH_4OH) = 237.5 \, \Omega^{-1} cm^2 \] ### Final Answer The equivalent conductance of `NH₄OH` at infinite dilution is: \[ \Lambda_0(NH_4OH) = 237.5 \, \Omega^{-1} cm^2 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate molar conductance for NH_(4)OH , given that molar conductance for Ba(OH)_(2), BaCl_(2) and NH_(4)Cl are 523.28, 280.0 and 129.8 ohm^(-1) cm^(2) mol^(-1) respectively.

The equivalent conductances of an infinitely dilute solution NH_(4)CI is 150 and the ionic conductances of OH^(-) and CI^(-) ions are 198 and 76 respectively. What will be the equivalent conductance of the solution of NH_(4)OH at infinite dilution. if the equivalent conductance of a 0.01N solution NH_(4)OH is 9.6, what will be its degree of dissociation.

At 25^@C equivalent conductance of a week acid HAc is 16.2 "ohm"^(-1) cm^(2) eq^(-1) .If the ionic conductances of Ac^(-) and H^(+) at infinite dilution are respectively 40.9 and 349.8 "ohm"^(-1)cm^(2)eq^(-1)., calculate the percentage dissociation of the week acid at 25^@C .

Which of the following expressions correctly repesents the equivalent conductance at infinte dilution of Al_(2)(SO_(4))_(3) . Given that Lambda_(Al^(3+))^(@) and Lambda_(SO_(4)^(2-))^(@) are the equivalent conductance at infinte dilution of the respective ions?

Select the equivalent conductivity of 1.0 M H_(2)SO_(4) , if its conductivity is 0.26 ohm^(-1) cm^(-1) :

Select the equivalent conductivity of 1.0 M H_(2)SO_(4) , if its conductivity is 0.26 ohm^(-1) cm^(-1) :

Calculate the equivalent conductivity of 1M H_(2)SO_(4) , whose specific conductivity is 26 xx 10^(-2) "ohm"^(-1) cm^(-1).

The values of wedge_(m)^(oo) for NH_(4)Cl,NaOH, and NaCl are, respectively, 149.74,248.1 ,and 126.4 ohm^(-1)cm^(2)eq^(-1) . The value of wedge_(eq)^(oo)NH_(4)OH is

The values of wedge_(m)^(oo) for NH_(4)Cl,NaOH, and NaCl are, respectively, 149.74,248.1 ,and 126.4 ohm^(-1)cm^(2)eq^(-1) . The value of wedge_(eq)^(oo)NH_(4)OH is

Using Kohlrausch law, calculate Lambda_0 for acetic acid, if Lambda_0 value for hydrochloric acid, sodium chloride and sodium acetate are respectively 426, 126 and 91 S cm^(2) mol^(-1).