Home
Class 12
CHEMISTRY
Standard reduction potential of I(3)^(-...

Standard reduction potential of `I_(3)^(-), I^(-) and Fe^(3+), Fe^(2+)` are `0.54 and 0.77 V`, respectively . Calculate the equilibrium constant for the reaction. `2Fe^(3+) + 3I^(-)

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the equilibrium constant for the reaction: \[ 2Fe^{3+} + 3I^{-} \rightleftharpoons 2Fe^{2+} + I_{3}^{-} \] we will follow these steps: ### Step 1: Identify the Standard Reduction Potentials We are given the standard reduction potentials: - For \( Fe^{3+} + e^{-} \rightarrow Fe^{2+} \): \( E^\circ = 0.77 \, V \) - For \( I_{3}^{-} + 2e^{-} \rightarrow 3I^{-} \): \( E^\circ = 0.54 \, V \) ### Step 2: Write the Half-Reactions The half-reactions can be written as: 1. Reduction of \( Fe^{3+} \): \[ Fe^{3+} + e^{-} \rightarrow Fe^{2+} \quad (E^\circ = 0.77 \, V) \] 2. Reduction of \( I_{3}^{-} \): \[ I_{3}^{-} + 2e^{-} \rightarrow 3I^{-} \quad (E^\circ = 0.54 \, V) \] ### Step 3: Determine the Oxidation Potentials For the reaction, we need the oxidation potentials: 1. Oxidation of \( Fe^{2+} \): \[ Fe^{2+} \rightarrow Fe^{3+} + e^{-} \quad (E^\circ = -0.77 \, V) \] 2. Oxidation of \( I^{-} \): \[ 3I^{-} \rightarrow I_{3}^{-} + 2e^{-} \quad (E^\circ = -0.54 \, V) \] ### Step 4: Combine the Half-Reactions To find the overall cell potential, we need to combine the half-reactions. The balanced overall reaction is: \[ 2Fe^{3+} + 3I^{-} \rightleftharpoons 2Fe^{2+} + I_{3}^{-} \] ### Step 5: Calculate the Cell Potential The cell potential \( E_{cell} \) can be calculated using the formula: \[ E_{cell} = E_{cathode} - E_{anode} \] Where: - \( E_{cathode} \) is the reduction potential of \( Fe^{3+} \) (0.77 V) - \( E_{anode} \) is the reduction potential of \( I_{3}^{-} \) (0.54 V) Thus: \[ E_{cell} = 0.77 \, V - 0.54 \, V = 0.23 \, V \] ### Step 6: Relate Cell Potential to Equilibrium Constant We use the Nernst equation to relate the cell potential to the equilibrium constant \( K \): \[ E_{cell} = \frac{0.0592}{n} \log K \] Where \( n \) is the number of moles of electrons transferred in the balanced equation. In our case, \( n = 6 \) (2 for \( Fe^{3+} \) and 4 for \( I^{-} \)). ### Step 7: Solve for the Equilibrium Constant \( K \) Rearranging the equation gives: \[ \log K = \frac{n \cdot E_{cell}}{0.0592} \] Substituting the values: \[ \log K = \frac{6 \cdot 0.23}{0.0592} \] Calculating: \[ \log K = \frac{1.38}{0.0592} \approx 23.29 \] Thus: \[ K = 10^{23.29} \approx 6.25 \times 10^{7} \] ### Final Answer The equilibrium constant \( K \) for the reaction is: \[ K \approx 6.25 \times 10^{7} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Use the standard potentials of the couples Au^(+)//Au(+1.69V),Au^(3+)//Au(+1.40V), and Fe^(3+)//Fe^(2+)(+0.77V) to calculate the equilibrium constant for the reaction 2Fe^(2+)(aq)+Au^(3+)(aq) leftrightarrow2Fe^(3+)(aq)+Au^(+)(aq)

The standard electrode potentials (reduction) of Pt//Fe^(3+),Fe^(+2) and Pt//Sn^(4+),Sn^(+2) are +0.77V and 0.15V respectively at 25^(@)C . The standard EMF of the reaction Sn^(4+) +2Fe^(2+) rarr Sn^(2+) +2Fe^(3+) is

Write the half reaction for the reaction 2Fe^(+3) + 2I^(-) to 2Fe^(+2) + I_(2)

The standard reduction potential for Zn^(2+)//Zn, Ni^(2+)//Ni and Fe^(2+)//Fe are -0.76, -0.23 and -0.44V respectively. The reaction X + Y^(2) rarr X^(2+) + Y will be spontaneous when:

Given that the standard reduction potentials E ^(0) of Fe^(+2)|Feis 0.26V and Fe ^(+3) |Fe is 0.76V respectively. The E ^(@)of Fe ^(+2)|Fe^(+3) is:

Given E^(c-)._(Fe^(2+)|Fe) and E^(c-)._(Fe^(3+)|Fe^(2+)) are -0.44 and 0.77V respectively. If Fe^(2+),Fe^(3+) and Fe blocks are kept together, then

If E^(c-)._(Fe^(3+)|Fe) and E^(c-)._(Fe^(2+)|Fe) are =-0.36 V and -0.439V , respectively, then the value of E^(c-)._(Fe^(3+)|Fe^(2+))

If E^(c-)._(Fe^(3+)|Fe) and E^(c-)._(Fe^(2+)|Fe) are =-0.36 V and -0.439V , respectively, then the value of E^(c-)._(Fe^(3+)|Fe^(2+))

If E_(Fe^(3+)//Fe)^(@) and E_(Fe^(2+)//Fe)^(@) are -0.36 V and 0.439 V respectively, then value of E_(Fe^(3+)//Fe^(2+))^(@) is

Calculate the magnetic moments of Fe^(2+) and Fe^(3+)