Home
Class 12
CHEMISTRY
50 ml of given H(2)O(2) solution is adde...

50 ml of given `H_(2)O_(2)` solution is added to excess KI solution in acidic medium. The liberated `I_(2)` required 20 ml of 0.04 M standard Hypo solution.
Molarity of `H_(2)O_(2)` solution is

Text Solution

AI Generated Solution

The correct Answer is:
To find the molarity of the hydrogen peroxide (H₂O₂) solution, we can follow these steps: ### Step 1: Write the balanced chemical equation The reaction between hydrogen peroxide (H₂O₂) and potassium iodide (KI) in acidic medium can be represented as follows: \[ 2 \, \text{H}_2\text{O}_2 + 2 \, \text{KI} + 2 \, \text{H}_2\text{SO}_4 \rightarrow 2 \, \text{K}_2\text{SO}_4 + 2 \, \text{H}_2\text{O} + \text{I}_2 \] ### Step 2: Determine the amount of iodine (I₂) produced From the problem, we know that the liberated iodine (I₂) required 20 ml of a 0.04 M hypo (sodium thiosulfate, Na₂S₂O₃) solution for titration. First, calculate the moles of hypo used: \[ \text{Moles of Na}_2\text{S}_2\text{O}_3 = \text{Molarity} \times \text{Volume (L)} = 0.04 \, \text{mol/L} \times 0.020 \, \text{L} = 0.0008 \, \text{mol} \] ### Step 3: Relate moles of iodine to moles of hydrogen peroxide The stoichiometry of the reaction shows that 1 mole of I₂ reacts with 2 moles of H₂O₂. Therefore, the moles of I₂ produced can be equated to the moles of Na₂S₂O₃ used: \[ \text{Moles of I}_2 = \text{Moles of Na}_2\text{S}_2\text{O}_3 = 0.0008 \, \text{mol} \] Thus, the moles of H₂O₂ can be calculated as: \[ \text{Moles of H}_2\text{O}_2 = 2 \times \text{Moles of I}_2 = 2 \times 0.0008 \, \text{mol} = 0.0016 \, \text{mol} \] ### Step 4: Calculate the molarity of the H₂O₂ solution The molarity (M) of the H₂O₂ solution can be calculated using the formula: \[ \text{Molarity} = \frac{\text{Moles of solute}}{\text{Volume of solution (L)}} \] Given that the volume of the H₂O₂ solution is 50 ml (or 0.050 L): \[ \text{Molarity of H}_2\text{O}_2 = \frac{0.0016 \, \text{mol}}{0.050 \, \text{L}} = 0.032 \, \text{M} \] ### Step 5: Convert to grams per liter (if needed) If we want to express this in grams per liter, we can use the molar mass of H₂O₂ (approximately 34 g/mol): \[ \text{Mass of H}_2\text{O}_2 = \text{Moles} \times \text{Molar mass} = 0.0016 \, \text{mol} \times 34 \, \text{g/mol} = 0.0544 \, \text{g} \] To find grams per liter: \[ \text{Concentration in g/L} = \frac{0.0544 \, \text{g}}{0.050 \, \text{L}} = 1.088 \, \text{g/L} \] ### Final Result The molarity of the H₂O₂ solution is approximately **0.032 M**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

10 ml of H_(2)O_(2) solution on treatment with Kl and titration of liberated l_(2) required 20 mL of 1 N hypo solution. What is the normality of H_(2)O_(2) solution ?

When 25 " mL of " an aqueous solution of H_2O_2 is titrated with an excess of KI solution in dilute H_2SO_4 , the liberated I_2 required 20 " mL of " 0.3 N Na_2S_2O_3 solution for complete reaction.volume strength of H_2O_2 solution.

638.0 g of CuSO_(4) solution is titrated with excess of 0.2 M KI solution. The liberated I_(2) required 400 " mL of " 1.0 M Na_(2)S_(2)O_(3) for complete reaction. The percentage purity of CuSO_(4) in the sample is

20ml of "0.5 M KMnO"_(4) in acidic media exactly neutralises 30ml of a H_(2)O_(2) solution. The volume strength of H_(2)O_(2) solution will be?

0.5 gmixture of K_(2)Cr_(2)O_(7) and KMnO_(4) was treated with excess of KI in acidic medium. Iodine liberated required 150 cm^(3) of 0.10 N solution of thiosulphate solution for titration. Find trhe percentage of K_(2)Cr_(2)O_(7) in the mixture :

To a 25 mL H_(2)O_(2) solution excess of an acidified solution of potassium iodide was added. The iodine liberated required 20 mL of 0.3 N sodium thiosulphate solution Calculate the volume strength of H_(2)O_(2) solution.

20 ml of 20 vol H_(2)O_(2) solution is diluted to 80 ml. The final volume strength of solution is

1 ml of H_(2)O_(2) solution given 10 ml of O_(2) at NTP. It is :

If 36.44 ml of "0.01652 M KMnO"_(4) solution in acid media is required to completely oxidize 25 ml of a H_(2)O_(2) solution. What will be the molarity of H_(2)O_(2) solution?

50.0 g sample of brass is dissolved in 1 L dil H_2SO_4.20mL of this solution is mixed with KI, and the liberated I_2 required 20 " mL of " 0.5 M hypo solution for titration calculate the amount of Cu in the alloy.